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List of errata

p- 19 The text reads:

Two sets A and B are equal if they contain the same elements,
that is, z € A if and only if z € B. Consequently, A = B if and
only if ACB and A C B.

This should be

Two sets A and B are equal if they contain the same elements,
that is, x € A if and only if z € B. Consequently, A = B if and
only if ACB and B C A.

p- 30 In the third item in Section 3.1.2,

In statements we assume that the semicolon operator is left-
associative. So S1; S2; .53 is to be read as S1; (S2; S3), the statement
whose immediate constituents are S; and So; Ss.

should read

In statements we assume that the semicolon operator is right-
associative. So S1; S2;.S3 is to be read as S1; (S2; S3), the statement
whose immediate constituents are S; and So; Ss.

p. 61 In Problem 4.18, two arrows are missing. The problem should read

Problem 4.18 Prove, using a suitable proof technique, that the big-step
semantics of statements is deterministic, that is, that for any statement
S and state s we have that if (S,s) — s’ and (S,s) — s’ then s’ = s”.
(You may assume that the big-step semantics of arithmetic and Boolean

expressions are deterministic.)

p- 88 A semicolon is missing after the second variable declaration in the

statement in Figure 6.2, which should be



begin

var x:= 0;
var y:= 42;

proc p is x:= x+3;
proc q is call p;

begin

var x:= 9;
proc p is x:= x+1;

call q;
y:i=X

end

end

p- 98 In Figure 7.1, another semicolon is missing. The statement should be



begin

var y:= 0;
var x:=1;

proc f(var x) is

begin
var z:= x-1;
y:i= y*x;

if x > 1 then
call f(z)
else
skip
end

y:=4;
call f(y);
z:=y

end

p- 99 In Table 7.3, a dash is missing in the last side condition. It should
read as follows:

envy, [z + l][next — '], env’ = (S, sto) — sto’
envy,envp b (call p(y), sto) — sto’

[CALL-R-RECgsg]

where envp p = (S, z, env{,, envlp), envy y =1
and " = envynext

no__ / / /
and env), = envp[p — (S, x, envy,, env)p)]

p- 107 Here, the first example has a superfluous semicolon and should read



begin
var y := 3;
var z := 2;

proc q (name x) is

begin
y = x +2
end;
z = (z+x)*y;
call q(z)

end

p.- 108 The statement in Figure 7.3 has some incorrect semicolons and
should read

begin

var y:=2;
proc p(name x) is

begin
var y:= 3;
var z := 2;
proc g(name x) is begin y:= x+2 end;
z = (z+x)*y;
call q(z)
end;

call p(y+4)

end

p. 113, line 2 ‘Concurrenct’ should read ‘Concurrent’.



pP. 249 In the last line of the page,
DPDecP

should read
DP € DecP



