Errata

Transitions and trees

Structural operational semantics of programming languages

Hans Hiittel
Aalborg University, Denmark

Updated 9th December 2010






Acknowledgements

The following readers have alerted me to the typos that this errata sheet is
intended to correct: Sabrine Mouritsen, Anders Franz Terkelsen, Bo Ander-

sen, Dior Christensen, and Laurence Day.

List of errata

p- 19 The text reads:

Two sets A and B are equal if they contain the same elements,
that is, z € A if and only if z € B. Consequently, A = B if and
only if ACB and A C B.

This should be

Two sets A and B are equal if they contain the same elements,
that is, x € A if and only if z € B. Consequently, A = B if and
only if ACB and B C A.

p- 30 In the third item in Section 3.1.2,

In statements we assume that the semicolon operator is left-
associative. So S1; S2; .53 is to be read as S1; (S2; S3), the statement
whose immediate constituents are S; and So; Ss.

should read

In statements we assume that the semicolon operator is right-
associative. So S1; S2;.S3 is to be read as S1; (S2; S3), the statement
whose immediate constituents are S; and So; Ss.

p. 61 In Problem 4.18, two arrows are missing. The problem should read

Problem 4.18 Prove, using a suitable proof technique, that the big-step
semantics of statements is deterministic, that is, that for any statement
S and state s we have that if (S,s) — s’ and (S,s) — s’ then s’ = s”.
(You may assume that the big-step semantics of arithmetic and Boolean

expressions are deterministic.)

p- 88 A semicolon is missing after the second variable declaration in the

statement in Figure 6.2, which should be



begin

var x:= 0;
var y:= 42;

proc p is x:= x+3;
proc q is call p;

begin

var x:= 9;
proc p is x:= x+1;

call q;
y:i=X

end

end

p- 98 In Figure 7.1, another semicolon is missing. The statement should be



begin

var y:= 0;
var x:=1;

proc f(var x) is

begin
var z:= x-1;
y:i= y*x;

if x > 1 then
call f(z)
else
skip
end

y:=4;
call f(y);
z:=y

end

p- 99 In Table 7.3, a dash is missing in the last side condition. It should
read as follows:

envy, [z + l][next — '], env’ = (S, sto) — sto’
envy,envp b (call p(y), sto) — sto’

[CALL-R-RECgsg]

where envp p = (S, z, env{,, envlp), envy y =1
and " = envynext

no__ / / /
and env), = envp[p — (S, x, envy,, env)p)]

p- 107 Here, the first example has a superfluous semicolon and should read



begin
var y := 3;
var z := 2;

proc q (name x) is

begin
y = x +2
end;
z = (z+x)*y;
call q(z)

end

p.- 108 The statement in Figure 7.3 has some incorrect semicolons and
should read

begin

var y:=2;
proc p(name x) is

begin
var y:= 3;
var z := 2;
proc g(name x) is begin y:= x+2 end;
z = (z+x)*y;
call q(z)
end;

call p(y+4)

end

p. 113, line 2 ‘Concurrenct’ should read ‘Concurrent’.



pP. 249 In the last line of the page,
DPDecP

should read
DP € DecP



