Errata

Transitions and trees

Structural operational semantics of programming languages

Hans Hüttel Aalborg University, Denmark

Updated 9th December 2010

Acknowledgements

The following readers have alerted me to the typos that this errata sheet is intended to correct: Sabrine Mouritsen, Anders Franz Terkelsen, Bo Andersen, Dior Christensen, and Laurence Day.

List of errata

p. 19 The text reads:

Two sets **A** and **B** are equal if they contain the same elements, that is, $x \in \mathbf{A}$ if and only if $x \in \mathbf{B}$. Consequently, $\mathbf{A} = \mathbf{B}$ if and only if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \subseteq \mathbf{B}$.

This should be

Two sets **A** and **B** are equal if they contain the same elements, that is, $x \in \mathbf{A}$ if and only if $x \in \mathbf{B}$. Consequently, $\mathbf{A} = \mathbf{B}$ if and only if $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{B} \subseteq \mathbf{A}$.

p. 30 In the third item in Section 3.1.2,

In statements we assume that the semicolon operator is leftassociative. So S_1 ; S_2 ; S_3 is to be read as S_1 ; $(S_2; S_3)$, the statement whose immediate constituents are S_1 and S_2 ; S_3 .

should read

In statements we assume that the semicolon operator is rightassociative. So S_1 ; S_2 ; S_3 is to be read as S_1 ; $(S_2; S_3)$, the statement whose immediate constituents are S_1 and S_2 ; S_3 .

p. 61 In Problem 4.18, two arrows are missing. The problem should read

Problem 4.18 Prove, using a suitable proof technique, that the big-step semantics of statements is *deterministic*, that is, that for any statement S and state s we have that if $\langle S, s \rangle \to s'$ and $\langle S, s \rangle \to s''$ then s' = s''. (You may assume that the big-step semantics of arithmetic and Boolean expressions are deterministic.)

p. 88 A semicolon is missing after the second variable declaration in the statement in Figure 6.2, which should be

```
begin
    var x:= 0;
    var y:= 42;
    proc p is x:= x+3;
    proc q is call p;
    begin
        var x:= 9;
        proc p is x:= x+1;
        call q;
        y:=x
        end
end
```

 $\mathbf{p.~98}$ In Figure 7.1, another semicolon is missing. The statement should be

4

```
begin
    var y := 0;
    var x:=1;
    proc f(var x) is
    begin
         var z := x-1;
         y := y * x;
         if
            x > 1 then
             call f(z)
         else
             skip
    {\tt end}
    y:=4;
    call f(y);
    z:= y
end
```

p. 99 In Table 7.3, a dash is missing in the last side condition. It should read as follows:

$\left[\text{CALL-R-REC}_{\text{BSS}}\right]$	$\frac{env_V'[x \mapsto l][\operatorname{next} \mapsto l'], env_P'' \vdash \langle S, sto \rangle \to sto'}{env_V, env_P \vdash \langle \operatorname{call} p(y), sto \rangle \to sto'}$
	where $env_P \ p = (S, x, env'_V, env'_P), env_V \ y = l$ and $l' = env_V$ next and $env''_P = env'_P[p \mapsto (S, x, env'_V, env'_P)]$

 $\mathbf{p.~107}$ Here, the first example has a superfluous semicolon and should read

p. 108 The statement in Figure 7.3 has some incorrect semicolons and should read

```
begin

var y:=2;
proc p(name x) is

begin
    var y:= 3;
    var z := 2;

    proc q(name x) is begin y:= x+2 end;

    z := (z+x)*y;
    call q(z)
    end;
call p(y+4)
end
```

p. 113, line 2 'Concurrenct' should read 'Concurrent'.

 $\mathbf{6}$

p. 249 In the last line of the page,

$DP\mathbf{DecP}$

should read

$DP \in \mathbf{DecP}$