
Errata

Transitions and trees

Structural operational semantics of programming languages

Hans Hüttel

Aalborg University, Denmark

Updated 9th December 2010





3

Acknowledgements

The following readers have alerted me to the typos that this errata sheet is

intended to correct: Sabrine Mouritsen, Anders Franz Terkelsen, Bo Ander-

sen, Dior Christensen, and Laurence Day.

List of errata

p. 19 The text reads:

Two sets A and B are equal if they contain the same elements,
that is, x ∈ A if and only if x ∈ B. Consequently, A = B if and
only if A ⊆ B and A ⊆ B.

This should be

Two sets A and B are equal if they contain the same elements,
that is, x ∈ A if and only if x ∈ B. Consequently, A = B if and
only if A ⊆ B and B ⊆ A.

p. 30 In the third item in Section 3.1.2,

In statements we assume that the semicolon operator is left-
associative. So S1;S2;S3 is to be read as S1; (S2;S3), the statement
whose immediate constituents are S1 and S2;S3.

should read

In statements we assume that the semicolon operator is right-
associative. So S1;S2;S3 is to be read as S1; (S2;S3), the statement
whose immediate constituents are S1 and S2;S3.

p. 61 In Problem 4.18, two arrows are missing. The problem should read

Problem 4.18 Prove, using a suitable proof technique, that the big-step
semantics of statements is deterministic, that is, that for any statement
S and state s we have that if 〈S, s〉 → s′ and 〈S, s〉 → s′′ then s′ = s′′.
(You may assume that the big-step semantics of arithmetic and Boolean
expressions are deterministic.)

p. 88 A semicolon is missing after the second variable declaration in the

statement in Figure 6.2, which should be



4

begin

var x:= 0;

var y:= 42;

proc p is x:= x+3;

proc q is call p;

begin

var x:= 9;

proc p is x:= x+1;

call q;

y:=x

end

end

p. 98 In Figure 7.1, another semicolon is missing. The statement should be



5

begin

var y:= 0;

var x:=1;

proc f(var x) is

begin

var z:= x-1;

y:= y*x;

if x > 1 then

call f(z)

else

skip

end

y:=4;

call f(y);

z:= y

end

p. 99 In Table 7.3, a dash is missing in the last side condition. It should

read as follows:

[call-r-recbss]
env′V [x 7→ l][next 7→ l′], env′′P ` 〈S, sto〉 → sto′

envV , envP ` 〈call p(y), sto〉 → sto′

where envP p = (S, x, env′V , env
′
P ), envV y = l

and l′ = envV next

and env′′P = env′P [p 7→ (S, x, env′V , env
′
P )]

p. 107 Here, the first example has a superfluous semicolon and should read



6

begin

var y := 3;

var z := 2;

proc q (name x) is

begin

y := x +2

end;

z := (z+x)*y;

call q(z)

end

p. 108 The statement in Figure 7.3 has some incorrect semicolons and

should read

begin

var y:=2;

proc p(name x) is

begin

var y:= 3;

var z := 2;

proc q(name x) is begin y:= x+2 end;

z := (z+x)*y;

call q(z)

end;

call p(y+4)

end

p. 113, line 2 ‘Concurrenct’ should read ‘Concurrent’.



7

p. 249 In the last line of the page,

DPDecP

should read

DP ∈ DecP


